
The ISIS System Manual, Version 2.0

K. Birman, R. Cooper, T. Joseph, K. Marzullo, M. Makpangou

K. Kane, F. Schmuck and M. Wood

V1.3.1

c

1989 by The ISIS Project

V2.0

c

1990 by The ISIS Project

1

September 11, 1990

Contents

1 Getting Started 1

2 ISIS in the large 39

2.1 ISIS in the large : 40

2.2 Use ISIS for things it is good at : : : : : : : : : : : : : : : : : 40

2.3 Hierarchical design : 41

2.4 Process groups as a modularity construct : : : : : : : : : : : 44

2.5 Building robust software : 47

2.6 An extended example : 48

2.7 A layered technology : 56

3 The Major Components of the ISIS System 59

3.1 ISIS runtime architecture : 60

3.2 Process group and communication level : : : : : : : : : : : : 65

3.2.1 Group membership changes : : : : : : : : : : : : : : : 66

3.2.2 Communication primitives : : : : : : : : : : : : : : : : 67

3.3 Hierarchical process groups : : : : : : : : : : : : : : : : : : : 72

3.4 Tools level of ISIS : 73

3.5 Utility level of ISIS : 74

3.6 META and DECEIT : 78

3.7 Wide area programming : 78

3.8 What's missing? : 79

4 Basic Facilities 83

4.1 Sites : 83

4.2 Addresses : 86

4.3 Messages : 88

4.4 Broadcasts and replies : 98

i

4.5 Process groups and process lists : : : : : : : : : : : : : : : : : 103

4.6 Monitors and watches : 114

4.7 State transfer : 119

4.8 Start sequence : 130

4.9 Special start sequences : 135

4.10 Connecting to ISIS from a remote machine : : : : : : : : : : 135

5 More About Messages 137

5.1 Creating and deleting a message : : : : : : : : : : : : : : : : 138

5.2 The msg put, msg gen, and msg get routines : : : : : : : : : 140

5.3 Message �elds : 146

5.4 De�ning new �eld types : 147

5.5 Other useful message routines : : : : : : : : : : : : : : : : : : 150

5.6 Input and output of messages : : : : : : : : : : : : : : : : : : 151

6 The Lightweight Task Subsystem 153

6.1 Basic task mechanisms : 153

6.2 Two common misunderstandings : : : : : : : : : : : : : : : : 155

6.3 Task creation : 157

6.4 Task synchronization : 158

6.5 Scheduling rule : 160

6.6 Urgent fork and signal : 161

6.7 Stack overow : 162

6.8 Sophisticated task usage : 165

6.9 Timer mechanism : 165

7 The Broadcast Interface 167

7.1 The ISIS broadcast and reply primitives : : : : : : : : : : : : 167

7.2 Forking o� a remote procedure call as a task : : : : : : : : : 174

7.2.1 New BYPASS feature : : : : : : : : : : : : : : : : : : 176

8 Virtual Synchrony 177

8.1 Virtually synchronous executions : : : : : : : : : : : : : : : : 177

8.2 The ideal virtually synchronous world : : : : : : : : : : : : : 179

8.3 External actions and communication that bypasses ISIS : : : 181

8.4 Dealing with stable storage : : : : : : : : : : : : : : : : : : : 182

ii

9 Replicated Data 185

9.1 Normal case : 185

9.2 Replicated data with unordered broadcasts : : : : : : : : : : 187

9.3 Synchronization needed : 188

9.4 Updates from an exclusive sender : : : : : : : : : : : : : : : : 189

9.5 State transfer and recovery from logs : : : : : : : : : : : : : : 189

10 Distributed and Parallel Executions 191

10.1 Parallel and replicated execution : : : : : : : : : : : : : : : : 191

10.2 Redundant computation : 192

10.3 Coordinator-cohort computation : : : : : : : : : : : : : : : : 194

10.4 Subdivided computations : 200

10.5 Updating replicated data in distributed executions : : : : : : 205

10.6 Disk �les : 208

10.7 Aborting a distributed execution before it terminates : : : : : 208

11 Synchronization Facilities 211

11.1 Token passing : 211

11.2 Some comments about the token algorithm : : : : : : : : : : 217

11.3 Token tool interface : 218

11.4 Locks : 219

12 Transactions 225

12.1 Coordinators and participants : : : : : : : : : : : : : : : : : : 226

12.2 Some ways of using transactions : : : : : : : : : : : : : : : : 231

13 Bypass communication 235

13.1 When will bypass communication be used : : : : : : : : : : : 235

13.2 How does bypass communication work? : : : : : : : : : : : : 236

13.3 Sources of overhead : 237

13.4 Process lists : 237

13.5 Multicast transport protocols : : : : : : : : : : : : : : : : : : 238

13.5.1 Dealing with new group views and failures : : : : : : : 240

13.5.2 Basic transport protocol interface : : : : : : : : : : : : 241

13.5.3 Self-addressed messages and exclusion mode ag : : : 242

13.5.4 Delivery of messages from remote processes : : : : : : 242

13.5.5 Other useful routines : : : : : : : : : : : : : : : : : : : 243

13.5.6 Fragmenting large messages : : : : : : : : : : : : : : : 244

13.5.7 When your protocol will be used : : : : : : : : : : : : 244

iii

14 Logging, Spooling, and Long-Haul Facilities 245

14.1 Logging tool : 246

14.1.1 The Automatic Mode : : : : : : : : : : : : : : : : : : 247

14.1.2 Recovery in the Automatic Mode : : : : : : : : : : : : 251

14.1.3 End-of-Replay Processing : : : : : : : : : : : : : : : : 254

14.1.4 Manual Log Flushing : : : : : : : : : : : : : : : : : : 255

14.1.5 Restrictions on the Automatic Mode : : : : : : : : : : 259

14.1.6 The Manual Mode : 262

14.1.7 General Restrictions and Notes : : : : : : : : : : : : : 268

14.2 Spooling and Long-haul communication tool : : : : : : : : : : 270

14.2.1 Installation hints : 275

14.2.2 Long-haul communication : : : : : : : : : : : : : : : : 279

14.2.3 File transfer : 280

14.2.4 Long-haul multicast : : : : : : : : : : : : : : : : : : : 281

14.2.5 Constants : 281

14.2.6 Warnings : 281

15 Broadcast Types and Order 283

15.1 The mbcast broadcast primitive. : : : : : : : : : : : : : : : : 283

15.2 The fbcast broadcast primitive. : : : : : : : : : : : : : : : : : 284

15.3 The cbcast broadcast primitive. : : : : : : : : : : : : : : : : : 284

15.4 Lazy asynchronous cbcasts : : : : : : : : : : : : : : : : : : : 286

15.5 The abcast primitive. : 287

15.6 The gbcast primitive. : 288

15.7 Picking the right protocol : 288

15.7.1 Example 1: a distributed information service : : : : : 289

15.7.2 Example 2: a fault-tolerant lock manager : : : : : : : 290

16 Advanced Facilities 293

16.1 Building large process groups : : : : : : : : : : : : : : : : : : 293

16.2 The remote exec facility : 295

16.3 Signals : 297

16.4 Forking o� a child from within ISIS : : : : : : : : : : : : : : : 299

16.5 Simulating multiple ISIS sites on one machine : : : : : : : : : 300

16.6 Interacting with �les and devices : : : : : : : : : : : : : : : : 301

16.7 Dealing with STREAM I/O connections : : : : : : : : : : : : 302

16.8 Using ISIS in an X-windows program : : : : : : : : : : : : : : 302

16.9 Using ISIS in a suntools program : : : : : : : : : : : : : : : : 305

16.10News facility : 305

iv

16.10.1How to post and receive news messages : : : : : : : : 305

16.10.2Example: a load monitoring program : : : : : : : : : : 307

16.10.3Diagnostics : 308

16.11The recovery manager : 309

16.12Cmd|the interactive ISIS control program : : : : : : : : : : 310

16.12.1Running the cmd tool : : : : : : : : : : : : : : : : : : 310

16.12.2Sending interactive messages : : : : : : : : : : : : : : 312

16.13Creating and interpreting client dumps : : : : : : : : : : : : : 315

16.14Creating and interpreting protocol process dumps : : : : : : : 321

16.15Load monitoring utility : 325

16.16How the system behaves under heavy load : : : : : : : : : : : 328

A Setting Up ISIS 329

A.0.1 Rolling in the source �les : : : : : : : : : : : : : : : : 329

A.0.2 Compiling ISIS : 329

A.0.3 Installing binaries and libraries : : : : : : : : : : : : : 330

A.0.4 Files ISIS needs to be able to run : : : : : : : : : : : : 331

A.0.5 Compiling and linking your own code : : : : : : : : : 333

A.0.6 Starting ISIS automatically on a machine : : : : : : : 333

A.0.7 Making use of the ISIS AUTOSTART option : : : : : 334

A.0.8 What's in the site �le : : : : : : : : : : : : : : : : : : 334

A.0.9 What's in the isis.rc �le : : : : : : : : : : : : : : : : : 335

A.0.10 Telling ISIS where it will be running : : : : : : : : : : 336

A.0.11 Telling ISIS how fast to detect failures : : : : : : : : : 337

A.0.12 What's in the source directories : : : : : : : : : : : : : 337

A.0.13 Some common problems with ISIS : : : : : : : : : : : 339

A.0.14 Shutting ISIS down : : : : : : : : : : : : : : : : : : : 341

A.0.15 Summary of installation procedure : : : : : : : : : : : 341

B Quick Reference 343

B.1 Miscellaneous : 343

B.2 Sites and addresses : 343

B.3 Messages : 345

B.4 Broadcasts : 348

B.5 Process groups : 350

B.6 Monitoring and watching : 351

B.7 Coordinator-cohort : 353

B.8 State transfer : 354

B.9 Tasking : 354

v

B.10 Transactions : 356

B.11 Files : 357

B.12 Implementation status : 358

B.13 Protection status : 358

C Performance of the Toolkit Facilities 359

D Twenty questions and other demo software 361

D.1 Twenty Questions : 361

D.2 The bank program : 363

D.3 Parallel make program : 364

E Calling ISIS from UNIX Fortran (F77) programs 379

F ISIS and non-ISIS task packages 383

G Using ISIS from ALLEGRO LISP programs 389

G.1 Installation : 389

G.2 Argument passing conventions : : : : : : : : : : : : : : : : : : 390

G.3 ISIS Functions : 391

G.4 Shortcomings with this release : : : : : : : : : : : : : : : : : 402

H Using the META subsystem 404

vi

Preface

This manual describes the structure and use of the ISIS toolkit for dis-

tributed and fault-tolerant programming. The material is structured so that

a user unfamiliar with ISIS should be able to write and test a distributed

application after reading just the �rst two chapters. Subsequent chapters

cover the various tools provided by ISIS in much greater detail, and the

reader who works through them should emerge with a thorough practical

understanding of what ISIS does and how to make use of it.

Throughout the manual, an attempt has been made to include code

samples as often as possible. Our hope is that in many cases, the reader will

be able to copy these code samples, making only a small number of changes

to adapt them into the environments where they will actually be used.

The structure of the manual is as follows:

Chapter 1. Getting Started An introduction to ISIS, focusing on an ex-

ample of a small but typical ISIS application.

Chapter 2. ISIS in the Large How to approach the design of a typical

ISIS application.

Chapter 3. The major components of the ISIS system A brief intro-

duction to the structure of ISIS itself.

Chapter 4. Basic Facilities Basic data structure and ISIS system calls.

How to maintain replicated data using ISIS.

Chapter 5. More About Messages A more detailed discussion of the

ISIS message subsystem.

Chapter 6. The Lightweight Task Subsystem Amore detailed discus-

sion of the ISIS lightweight task subsystem.

vii

Chapter 7. Broadcast Interface The long form of the broadcast system

call, and the options it supports.

Chapter 8. Virtual Synchrony A more detailed presentation of the idea

behind virtual synchrony and its impact on programming in ISIS.

Chapter 9. Replicated data A discussion of how to maintain replicated

data using ISIS.

Chapter 10. Distributed and Parallel Executions Techniques for ob-

taining distributed and parallel executions in ISIS.

Chapter 11. Synchronization How to obtain synchronization and lock-

ing using ISIS.

Chapter 12. Transactions Dealing with transactional databases and �les

from within ISIS.

Chapter 13. Bypass communication Details of the new mechanisms for

fast communication in ISIS.

Chapter 14. The Logging Facility How to use the ISIS logging facility

to develop software that can recover from total failures without losing

its state.

Chapter 15. Broadcast Types and order Types of broadcasts available

and how their delivery ordering guarantees vary.

Chapter 16. Advanced Facilities Discussions of a number of advanced

topics, including reception and generation of signals, forking from

within ISIS clients, the remote execution facility, rules for interacting

with devices from within ISIS, using ISIS in an X-windows program,

using ISIS in a suntools program, the recovery manager, an interac-

tive ISIS control program, creating and interpreting client and protocol

process dumps, how the system behaves when overloaded, and adding

new transport protocols to ISIS.

viii

APPENDICIES

Appendix A. Setting Up ISIS A section aimed at the systems admin-

istrator responsible for setting up ISIS on a network.

Appendix B. Quick Reference A summary of the ISIS system.

Appendix C. Performance of the toolkit facilities Will contain detailed

performance information about the broadcast primitives and the toolkit

as a whole in a future version of the manual.

Appendix D. Demonstration programs ISIS comes with several demo

programs. This appendix explains how to run them.

Appendix E. FORTRAN interface to ISIS ISIS can be called fromUNIX

F77. This appendix summarizes the changes to the ISIS interface made

to support such calls. Currently, the F77 interface has only been tested

under SUN OS, but it should work under other systems such as MACH

as well.

Appendix F. Dealing with old code and non-ISIS task packages Some

systems on which ISIS runs (MACH, SUN OS 4.0, APOLLO UNIX)

support their own lightweight task/process mechanisms. You can use

these from ISIS, preemptive scheduling and all. This chapter explains

how. The chapter also covers some issues that arise when integrating

pre-existing programs into an ISIS-based application.

Appendix G. Using ISIS from LISP ISIS can be called from Allegro

Common LISP and LUCID Common LISP (we are working on Harlequin).

This chapter covers the necessary details.

Appendix H. The META System META is a system for de�ning and

monitoring realtime sensors under ISIS and for triggering actions based

on detected events.

Changes to ISIS in switching from V1.3.1 to V2.1

The purpose of this section is to summarize the ways that ISIS has changed

in going from ISIS V1.3.1 to V2.1. Most changes are upgrades that continue

to support existing code without requiring modi�cations.

ix

1. This manual has been extensively revised and has major new sections

on issues such as large-systems architecture and long-haul communi-

cation. Research papers are available on most of the major changes,

through Cornell.

2. The new BYPASS facility is working quite well even for many groups

and rapid group membership changes. You need to enable this at

compile time and you need to be consistent in any given group (either

all members link with a "bypass" copy of clib or none do so). In ISIS

V3.0 BYPASS will be the default. Right now, because pg client

doesn't exploit the BYPASS protocols we don't enable it by default,

but this restriction will soon be eliminated.

3. The META system has been substantially extended and is described

in Appendix H.

4. There are new ways to connect to ISIS. The interface isis init l

o�ers a way to force a restart of the system if an application starts up

and ISIS is not running; it also gives some control over whether ISIS

will \panic" if the system is not up. Restart is done, if necessary, by

running the shell script /usr/bin/startisis. You must de�ne and

install this shell script if you plan to make use of this feature.

5. There is a new interface, isis remote, by which remote clients (on

machines not listed in the ISIS sites �le) can connect to the system

at some \mother" location, obtaining all of its features transparently.

Initially this will support only remote UNIX clients, but we hope to ex-

tend the mechanism to support remote clients on other host operating

systems in the future (OS/2, DEC VMS, and perhaps even IBM's VM

system). In the present version of the system, if the mother machine

for a remote client fails, the remote client can trap the resulting excep-

tion by de�ning a procedure isis failed() that reconnects to ISIS

on a di�erent machine and returns 0; it will, however, be necessary to

rejoin any process groups to which the application belonged each time

this occurs. The whole mechanism will be made more transparent in

ISIS V3.0.

6. Both isis init and isis remote now check for environment variables

that might de�ne the ISIS port number to connect to. isis init

checks for the variable ISISPORT and uses it if found. isis remote

checks for the variable ISISREMOTE and uses it if found.

x

7. Associated with this interface is a new routine isis probe(freq,timeout)

that asks ISIS to check the liveness of a client at frequence freq sec-

onds, shutting it down if there is no reply in timeout seconds.

8. A set of new mechanisms have been added for faster communication.

These are called the bypass protocol suite and include a group subset

communication option (called process lists) and a way to de�ne user-

supplied data transport routines. A minimal interface to the transport

layer has also been added, called mbcast.

9. The address structure has been changed, and the routine addr cmp no

longer looks at entry numbers at all. The old semantics of addr cmp,

in which the entry numbers are compared under a wild-card rule, are

still available through an interface called paddr cmp.

10. The problem of group address pointers being deallocated when a pro-

cess leaves the group has been eliminated. Group addresses are now

cached and the pointers remain valid inde�nitely. The overhead of this

is low. The approach also makes pg lookup much cheaper.

11. A new spooling and long-haul communication facility has been added

to the system. It can be used to build services that only run periodi-

cally, and to interconnect physically remote ISIS clusters.

12. The number of sites that can be connected to ISIS has been greatly

increased, to 255 per cluster plus an unlimited number of machines

using the isis remote interface. The sites �le only lists the sites

directly in the cluster.

13. The limit on the number of members and clients in a process group has

been decreased to 32 because the BYPASS protocol is slow for group

membership changes with more than this number of members. If you

don't use BYPASS you could set PG ALEN in protos/pr groups.h to

a higher value (it used to be 128). We plan to eliminate the limit on

clients completely in V3.0 of the system, but the limit on members is

probably not going away anytime soon.

14. A new routine cc terminate l is supported, it sends a copy of the

termination message to an additional group or process destination as

well as terminating the coordinator-cohort computation, all in a single

atomic action. When the extra address refers to a group, the caller

must belong to that group.

xi

15. A new routine pg detect failure is available for detecting total fail-

ure in a group to which the caller does not belong.

16. The runtime memory requirements of the system have been reduced.

17. ISIS can now be accessed from C++ and compiled or called from GCC.

The necessary type signatures are included.

18. Some routines have become macros, such as msg delete and addr cmp.

This may result in problems compiling code that passed such routines

as addresses (there are usually \real" versions of them around too, for

example MSG DELETE and ADDR CMP).

19. The task facility has been extended to support a task-level selectmech-

anism, called isis wait, as well as a way to enter and leave the ISIS

tasking world dynamically, i.e. to exploit true parallelism on a multi-

processor.

20. To bene�t from the Mach copy-on-write message passing mechanism,

ISIS now uses Mach IPC if possible for its intra-machine communica-

tion. The change is transparent but leads to a substantial performance

improvement within Mach systems.

21. Ways to refuse to participate in a state transfer or coordinator-cohort

computation have been added.

22. The client dump format has been extended and improved.

23. The SUNTOOLS graphics interface is being phased out in favor of the

various forms of X11, including Open Look. We are looking at im-

provements to the X11 interface at the widget level, which is currently

not an option in ISIS The recommended X11 interface has changed a

bit (see the spread or grid demos for examples).

24. A new message library has been added that includes a way to put an

indirect data reference into a message, using a format %*X. ISIS does a

call-back to a user-supplied routine when �nished with the pointer. By

combining this with the %-X format type in msg get, all data copying

can be eliminated.

25. Support for the oating point and double-precision data types has been

added. ISIS assumes that the IEEE standard oating point format is

in use.

xii

26. The remote-exec utility has been extended to implement the remote

user-id and password options, and the parallel make demo has been

�xed.

27. An all-out attack on performance has greatly improved the speed of

the whole system.

28. The broadcast \guard" facility has been eliminated.

29. A bug prevents the simultaneous use of SUNTOOLS graphics appli-

cation and the new bypass mode software; things are �ne if ISIS is

compiled with BYPASS disabled (no -DBYPASS on command line

when compiling clib/cl bypass.c). However, compiling this way

slows things down to the performance of the old V1.3.1 system.

30. The fortran interface now supports function calls with underscores in

the variable names for use from fortran's that permit such names. It

is illegal to mix both styles of reference, however.

31. A bug in the SUN4 lightweight context switch code was �xed, permit-

ting larger numbers of tasks and faster task-to-task switching.

32. An unsupported feature permitting users to run multiple ISIS systems

on a single machine (i.e. to debug code that senses and reacts to

remote hardware failures) is now supported (see Chapter 16).

33. A new style of message reception is supported. You specify the entry

routine as MSG ENQUEUE and use msg rcv to collect the arriving mes-

sages one by one. There are performance advantages but many virtual

synchrony risks to doing this.

34. Timeouts are supported in isis accept events() and in bcast l.

Looking further into the future, we expect ISIS V3.0 to be available

sometime in late 1990. That version of the system will will tolerate network

partitioning and support scaling mechanisms suitable for use in extremely

large networks, with potentially thousands of nodes.

Information on future releases of ISIS is available from Cornell University

Contact isis@cs.cornell.edu to be added to the ISIS mailing list for new tech-

nical reports or to receive printed noti�cation of new releases. We also urge

ISIS users to follow the network newsgroup \comp.sys.isis" for discussion of

ISIS-related topics, bug �xes, and so forth.

xiii

ISIS bugs should be reported to isis-bugs@cs.cornell.edu. We respond

promptly to any and all reports, however minor. If you have problems

installing ISIS on your system, we will be happy to help.

xiv

Chapter 1

Getting Started

There is perhaps no better way to learn about a new system than by actually

using it, so let us begin by using ISIS to develop a simple application. A

typical ISIS application has parts that run on several di�erent machines

and can be expanded to include more machines or be removed from some

machines even as the application is running. The reason for distributing

the application over a number of machines may be to share the work, to

obtain faster response time, or to be able to continue operation despite the

failures of some of the machines. The example below has been chosen with

the idea of exposing you to most of the basic features of ISIS rather than

to illustrate a real-life ISIS application. Yet, you will see that ISIS makes it

simple to write a program that is distributed, dynamically expandable, and

fault-tolerant.

We will consider a distributed \time-card" service for an organization

with several departments. The organization hires a number of temporary

workers, who may work in several di�erent departments in a given week, cov-

ering excess work where and when required. Each department separately

records the number of hours each temporary employee works in that de-

partment. The object of the time-card service is to enable someone to give

the service the name of an employee and obtain the number of hours that

the employee worked in the various departments the previous week. (The

employee will presumably be paid on this basis.) The time-card service will

have to search through the records of the individual departments before

giving its response.

If the organization has a number of workstations connected by a network

(and they have ISIS), this service could be implemented to run on several

1

2 Getting Started Chapter 1

of these machines instead of on just one machine. One advantage is that

the records of di�erent departments can be scanned in parallel on several

machines, instead of one after the other on a single machine. This means

that queries will be answered sooner. A second advantage is that we can

ensure that the service remains available even when some of the machines are

not operational because of a failure or because they have been taken o�-line

for maintenance or for other reasons. Let us assume that each department

keeps its records in a �le called department1, department2, department3,

and so on, and that each record is simply a line giving the employee's name

followed by the number of hours he or she worked. We will also assume that

these �les are available on all the machines on which the service runs.

Before we go any further with our example, we need to introduce some

of the ideas that are central to programming with ISIS.

Process groups and broadcasts

One of the most basic mechanisms that ISIS provides is a means of group-

ing processes together and naming them as a unit. A process group could

contain just a single member, but will often consist of a number of processes

residing on machines anywhere in the system. The membership of a process

group could change with time, as new processes join the group or as existing

members leave it, either out of choice or because of a failure of some part of

the system. A process can be a member of more than one process group.

ISIS also provides a broadcast mechanism that enables you to send a

message from a process to a process group. To do this, the sending process

�rst asks ISIS to \look up" the name of the process group and obtains an

\address". It then performs a broadcast

1

giving this address, the message,

and other relevant information as arguments. The e�ect of this is to send

a copy of the message to each of the current members of the process group.

All members will eventually receive the message, although they may receive

it at di�erent times.

The broadcast mechanism also allows the recipient of a message to send

a reply, or to forward it to some other process that will send a reply. A

process broadcasting a message can indicate that it wants to wait for a

speci�c number of replies, or that it wants a reply from all the recipients

of the message. The broadcast function call returns when the requested

1

The term \broadcast" is used in many di�erent ways; we use it to mean the sending

of a message from one process to others using the ISIS broadcast function call.

Chapter 1 Getting Started 3

number of replies have been received. If the group is not large enough, or if

so many recipients terminate (possibly because of failures) that the required

number of replies cannot be collected, ISIS will collect as many replies as

possible and notify the sender of the shortfall. This reply mechanism allows

the ISIS broadcast facility to be used as a generalized remote procedure call

mechanism.

The most common reason for making a set of processes into a process

group is to be able to broadcast messages to the group as a whole, even

when its membership may be changing. As a special case, the simplest way

to send a message to an individual process is to make it a member of a

process group containing only itself, and broadcast messages to this group.

If a process will receive messages both as an individual and as a member of

a process group, it can be made a member of two process groups. Process

groups are cheap in ISIS, so this should not pose performance problems.

There is another reason why you might want to make a set of processes

into a process group. ISIS provides simple-to-use tools that permit members

of a process group to access shared or replicated information, to perform cer-

tain forms of coordinated distributed execution, and to tolerate and recover

from failures, among other things. If a set of processes wishes to make use

of these tools, they would typically be made members of a process group.

These tools will be described in later sections.

Process groups provide a convenient way of giving an abstract name to

the service implemented by the members of the group. Other processes

interact with the service using the name of the group and the broadcast fa-

cility. They need not be aware of the actual membership of the group. This

means that the group implementing the service can grow, shrink, move to

di�erent machines, or add new capabilities without any interruption to the

service, and with the users of the service being unaware of these changes. It

is this feature that makes it possible to develop applications that are mod-

ular, dynamically expandable, and tolerant of failures. Figure 1.1 provides

an illustration of this. It shows a process P communicating with a process

group that implements a print service. The important thing to notice is

that in all three cases P addressed its message to the group PrintService.

ISIS keeps track of the group membership and delivers the message to the

current members. P thus thinks of the group as an abstract service im-

plementing some function (print documents) and does not care about how

many members the group has or where they happen to be currently located.

It should be noted that the ISIS namespace is actually structured into

naming \scopes" in order to limit the cost associated with this addressing

4 Getting Started Chapter 1

Figure 1.1: Process groups provide a unit of abstraction.

Chapter 1 Getting Started 5

mechanism. However, one can use ISIS without worrying about this issue,

and we will defer discussion of it until later in the manual.

Tasks and entries

Readers familiar with UNIX will know that a UNIX \process" has a private

address space within which a single thread of control lives. Some newer

operating systems like MACH have introduced a notion of lightweight tasks

that coexist within a single process, sharing the address space. Although

ISIS was built on top of UNIX, we needed a task mechanism to implement

the system. Consequently, a process in an ISIS application is internally

structured into a number of tasks. An ISIS task looks just like a C function,

and shares the same address space and global variables as all the other tasks

and functions in the process. The di�erence is that a task (and not just the

function called main) can be invoked by the system and start executing in

response to certain events, the most common of which is message delivery. A

task that is started up in response to a message delivery is called an \entry".

A process can have many entries and each one is given a di�erent \entry

number". When a message is sent, it is addressed to a particular entry

number. On delivery, (a pointer to) the message is passed as a parameter

to the entry, which typically reads the contents of the message and acts

accordingly.

Programming with tasks is not very di�erent from programming with

regular C functions, except for three things. One is that you may need to

link to special libraries, such as \-llwp" under SUN UNIX. Another is that

when a task makes certain ISIS system calls, it is possible for a new task

to be started up and begin executing before the system call returns. The

original task will later continue from where it left o�. As an example,

consider a task that made a system call to broadcast a message and is now

waiting for replies. If a new message arrives before the replies come, another

task (an entry) may be started up to handle the new message even though

the �rst task has not terminated. Normally this poses no problem, but if

the second task changes the values of global variables, then the �rst task

has to be aware of the fact that their values might change between when

it performs the broadcast system call and when the system call returns.

System calls that allow other tasks to be started up before they return are

called \blocking" system calls because they \block" the execution of the

task that performs the call. This documentation will indicate which system

6 Getting Started Chapter 1

calls may block, and under what conditions.

The other thing to keep in mind when programming with tasks is that

they may have a stack limit of 32k bytes. We say \may" because this limit

does not apply on all systems (c.f. MACH) and because it can be over-ridden

if necessary. A 32kb stack is su�cient for most purposes, but extremely deep

nesting of function calls (as might happen with recursive calls) or allocation

of large arrays or data structures on the stack may lead to the limit being

exceeded. ISIS will usually, but not always, detect this. You can increase

(or decrease) this limit with a one-time declaration, but be aware that all

tasks will have this new stack size, and if it is made too large you may have

problems with memory allocation. There are various ways to get around

this, including setting a per-task limit or calling a single subroutine without

any stack size limit, provided that the subroutine will not invoke any ISIS

functions before it returns. This is convenient when, for example, an ISIS

task must call a large piece of software over which the ISIS programmer has

no control, and which might not respect the ISIS conventions. We'll say

more about this later.

Considerable thought has been given to the problem of porting \old

code" to run under ISIS, especially in the case where the old code was not

task-oriented. By taking appropriate care, one can port \old" programs

to ISIS in such a way that only new code (added in conjunction with the

port) is subject to any stack limit at all. Moreover, under systems that

already support a lightweight task facility, such as SUNOS (LWP) or MACH

(Cthreads), ISIS allows you to combine the \native" facilities with the ISIS

facilities in a completely unrestricted manner. See Appendix F for a detailed

discussion of both of these subjects.

Monitoring events

A process can instruct ISIS to notify it when certain types of events occur.

It does so by giving ISIS the name of a task to invoke (and an argument to

pass to the task) when that type of event takes place. Among the types of

events that can be monitored are process group membership changes, process

termination, and site failures. This facility may be used to reapportion the

work load when new members join or leave a process group, or to take over

work from a process or site that fails, among other things.

Chapter 1 Getting Started 7

Example: the time-card service

From the discussion above, it follows that the time-card service should be

implemented as a process group consisting of a number of processes running

on di�erent machines. We will call the group timeservice. The reason for

putting the processes in one process group is to be able to use the broadcast

mechanism to send queries to the group as a whole. All the members of

the time-card service execute the same program (which we will call the

service program). Another program (the query program) is used to query

the service. We will develop both programs side by side, as is typical when

programming with ISIS.

Part of the code for the service program is shown below. The value

<port-no> is the port number used by ISIS to talk to applications. You will

have to ask your system administrator for this. If the port-number is given

as 0, then ISIS will �rst check for an environment variable ISISPORT, and

will use this number if found. If not, ISIS will look in the /etc/services

�le, you may give the value 0 for <port-no> and ISIS will look it up for you.

You may need to consult with the person who installed ISIS on your system

if you try using port number 0 and your program won't start up. ISIS V2.0

and beyond includes automated restart procedures that start ISIS on a site

when the �rst attempt is made to run an ISIS application there. This is

done using the interface isis init l, as described in Sec. 2.9. To connect

to an ISIS running on a di�erent machine, use isis remote, as described

in Sec. 2.10. A call to isis probe(freq,wait) is used to tell ISIS to begin

watching th e client. ISIS will probe it once every freq seconds and kill

the process is no response if received after wait seconds. By default, ISIS

will not probe local clients and will probe remote clients every 60 seconds,

killing them if there is no response within a further 60 seconds.

#include "isis.h"

#define QUERY_ENTRY 1

address *gaddr_p;

int my_index;

int my_dept;

main()

{

int service_maintask();

8 Getting Started Chapter 1

int group_change();

int receive_query();

isis_init (<port-no>);

/* Declare tasks and entry points */

isis_task (service_maintask, "service_maintask");

isis_task (group_change, "group_change");

isis_entry (QUERY_ENTRY, receive_query,

"receive_query");

isis_mainloop (service_maintask);

}

service_maintask()

{

int group_change();

/* Join the process group and monitor */

/* membership changes */

gaddr_p = pg_join ("timeservice",

PG_MONITOR, group_change, 0,

0);

isis_start_done();

}

group_change (gview_p, arg)

groupview *gview_p;

int arg;

{

int i;

/* Compute a unique index for this member */

i = 0;

while (!addr_ismine (&gview_p->gv_members[i]))

i++;

my_index = i + 1;

}

Chapter 1 Getting Started 9

In an ISIS application, the function main usually just reads in the com-

mand line arguments (this example has none), initializes ISIS, declares tasks

and entries, and sets o� the main loop. The argument to isis mainloop is

the �rst task to be run. The �rst thing that service maintask does is to

join the process group timeservice and set up a monitor for group mem-

bership changes. The �rst argument to pg join is the name of the group,

and the last argument is always a 0. In between these two arguments, you

may specify a number of optional keywords and the arguments correspond-

ing to those keywords. Here, the keyword PG MONITOR speci�es that the

task group change is to be called with the new group view and the given

argument (in this case 0) whenever the group membership changes. The

function pg join returns the address of the group, which is stored in the

global variable gaddr. When the main task is begun, ISIS inhibits the deliv-

ery of new requests from other processes. This ensures that you can do all

the necessary initialization before being asked to respond to other events like

incoming messages. The call isis start done tells the ISIS system that the

startup sequence is completed. This means that new tasks may be started

up at the next blocking system call or after the main task terminates. ISIS

automatically invokes isis start done when the main task terminates (the

call is hence unnecessary here), but if the main task remains in a loop and

you forget to call isis start done, your application will simply execute the

main task and do nothing else. Notice that if you want to terminate the

execution of an ISIS process, you must call exit explicitly.

It is important to realize that an ISIS process can be active even if there

are no active tasks within it (e.g. the main task has �nished, and no new

tasks have been started). In fact, ISIS is designed under the assumption that

tasks will start up, do the work they are supposed to do, and then terminate

(by returning). This applies to the main task as well as any others. A process

with no active tasks in it is in fact waiting in isis mainloop for work to

do. Later in the manual we describe a way to obtain a printable dump of

the internal state of a process that includes a list of all active tasks within

it.

Look now at the routine group change. This routine is called in each

member of the group (recall that they are all executing the same piece

of code) whenever the group membership changes. Routines that monitor

group memberships are always called with a pointer to the \group view"

structure as its �rst argument. (The second argument is a value supplied

by the user when the monitor is set up). The groupview structure contains

information about the process group (Section 2.5). In particular, it contains

10 Getting Started Chapter 1

a list of the addresses of all the current members gv members. The group

view structure always orders this list according to the \rank" of the mem-

bers. The oldest member in the group has rank 0, the second oldest rank

1, and so on. So the rank can be used to give each member a unique index

that distinguishes it from the other members. In the example, my index

contains the value of the rank +1. (Another way to obtain the rank is to

call pg rank(gaddr, paddr), which returns the rank of process paddr in

the group gaddr.) The task group change is invoked in a process when the

process joins the group for the �rst time (this, too, is a membership change),

so when isis start done is called my index will have a de�ned value. This

index will change each time a member joins or leaves the group.

If you actually type this example in, you may wonder how to print things

like ISIS address data structures in a human-readible format. ISIS has func-

tions for this purpose. For example, paddr will print a single address (given

a pointer to it), and paddrs will print all the addresses in a list of addresses,

such as the one msg getdests (get destinations to which a message was

sent) returns. The �elds printed include the site-id and incarnation number

where the process is running and the UNIX process-id of the process. For

example, to print the the contents of a groupview gip:

print("Group <%s>: ", gip->gi_name);

paddr(gip->gi_addr);

print(" %d members, viewid %d.%d\n",

gip->gi_nmemb, VMM(gip->gi_viewid));

print("Members = [");

paddrs(gip->gi_members);

print("]\n");

Here, the macro VMM is used to take the unsigned long integer viewid apart

into its major and minor numbers. Major numbers change only when pro-

cesses join and leave a group; the minor viewid number also increments when

certain types of (very infrequent) broadcasts are received by the group mem-

bers.

To receive incoming messages we must de�ne an entry. The isis entry

statement declares such an entry, giving it the entry number QUERY ENTRY.

We now give the code for this entry. We assume that an incoming query

message contains a string giving the name of an employee. For now, we

assume that there are at least as many members in the process group as

there are departments, and that each member is responsible for searching

through the �le for the department whose number is in my dept. Extra

Chapter 1 Getting Started 11

members have the value 0 in my dept and do nothing. We will see later how

the members decide which department they are responsible for, and how

they handle the case where there are fewer members than departments.

receive_query (msg_p)

message *msg_p;

{

char query_name[MAX_NAMELEN];

int query_hours;

if (my_dept != 0)

{

/* Read employee name from message */

msg_get (msg_p, "%s", query_name);

/* Search through relevant file to find number */

/* of hours worked in my_dept and store it in */

/* query_hours */

/* Send reply message */

reply (msg_p, "%d%d", my_dept, query_hours);

}

else /* I am not responsible for any department */

reply (msg_p, "%d%d", 0, 0);

}

An entry is called when a message addressed to its entry number arrives

at a process. Its �rst argument is a pointer to the message. This pointer

may be used to read data out of the message using msg get, which has an

interface similar to fscanf. In this case, it reads a string of characters out

of the message and stores it in query name.

Let us shift gears for a minute and look at the query program. It has a

similar initialization sequence, and simply reads in a name from the terminal,

broadcasts a message to the timeservice process group, and prints out the

replies. This is what the code looks like.

#include "isis.h"

#define QUERY_ENTRY 1 /* From the service */

#define MAX_NAMELEN 64

12 Getting Started Chapter 1

#define NDEPTS 5

main()

{

int query_maintask();

isis_init (<port-no>);

/* Declare tasks and entry points */

isis_task (query_maintask, "query_maintask");

isis_mainloop (query_maintask);

}

query_maintask()

{

address *gaddr_p;

char name[MAX_NAMELEN];

int dept[NDEPTS], hours[NDEPTS];

int i;

/* Find address of timeservice process group */

gaddr_p = pg_lookup ("timeservice");

if (addr_isnull(gaddr_p))

{

printf ("Sorry! the service is not available\n");

exit();

}

isis_start_done();

/* Loop asking queries */

printf ("Enter employee name (^D to quit): ");

while (scanf ("%s", name) == 1)

{

/* Broadcast a message containing the name and */

/* collect replies */

do

bcast (gaddr_p, QUERY_ENTRY, "%s", name, ALL,

"%d%d", dept, hours);

Chapter 1 Getting Started 13

while (isis_nreplies != isis_nsent);

/* Print out time card */

printf ("Time card for %s:\n", name);

printf (" Dept. Hours\n");

for (i = 0; i < isis_nreplies; i++)

if(dept[i])

printf ("%8d%8d\n", dept[i], hours[i]);

/* Read in next name */

printf ("\nEnter employee name (^D to quit): ");

}

/* Quit by explicitly terminating this process */

exit(0);

}

Notice the use of pg lookup to obtain the address of a process group.

The most signi�cant part of the code, of course, is the call to bcast to send

a message and collect the replies. As you can see, the call �rst speci�es

the address and the entry number. This is followed by a description of the

data to be put into the outgoing message (in a form similar to fprintf).

Next comes the number of replies wanted. The constant ALL speci�es that

a reply is wanted from all the processes to which a copy of this message was

sent. This is followed by a description of where to put the data that is read

out of the reply messages (in a form similar to fscanf). Unlike fscanf,

though, each item is a pointer to an array of the given type, because there

could be more than one reply message. The data from each reply goes into

one element of each of the arrays. Compare the call to bcast in the query

program with the calls to msg get and reply in the service program; it's

easy to see how they match up.

When a call to bcast returns, the global variable isis nsent con-

tains the number of processes that were sent a copy of the message and

isis nreplies contains the number of replies collected (not counting \null

replies" sent using the special ISIS function nullreply). (isis nreplies

is also the return value of bcast, unless an error occurs, in which case an

error code is returned.) In our example, these two values would normally

be equal. However, if a process that was sent a message terminates before

replying (possibly because of a failure), ISIS will detect this and the call

14 Getting Started Chapter 1

to bcast will return without collecting a reply from this member. A pro-

cess that terminates is automatically dropped out of any process group it

belonged to, so our query program reissues the broadcast if this happens.

This next time around the message will be sent to the new membership of

the group and unless more processes terminate, a reply will be received from

all of them.

Now we shall see how each member is assigned a department (we still

assume that there are at least as many members as there are departments).

Let NDEPTS be the number of departments. Earlier we showed how each

member can compute a unique index (my index). A simple rule would be to

make the member with index i responsible for department i, for i � NDEPTS.

A member with index i > NDEPTS does nothing unless an active member

drops out of the group (possibly because of a failure). If the index of a

previously inactive member now becomes less than or equal to NDEPTS, it

will begin to take part in the search. Such a process is called a \standby".

Standbys make an application tolerant of failures, and are used often in ISIS.

This application will tolerate the failure of as many processes as there are

standbys.

The complete code for the service program is given below. Note that

whenever the group membership changes, each member recomputes my index

and opens the relevant �le departmenti (and closes any previously opened

one).

#include <stdio.h>

#include "isis.h"

#define QUERY_ENTRY 1

#define MAX_NAMELEN 64

#define NDEPTS 5

address *gaddr_p;

int my_index;

int my_dept = 0;

FILE *my_file_p;

main()

{

/* Same as before */

}

Chapter 1 Getting Started 15

service_maintask()

{

/* Same as before */

}

group_change (gview_p, arg)

groupview *gview_p;

int arg;

{

char filename[16];

/* Compute a unique index for this member */

i = 0;

while (!addr_ismine (&gview_p->gv_members[i]))

i++;

my_index = i + 1;

/* Close previously open file, if any */

if (my_dept != 0)

fclose (my_file_p);

/* Reassign departments */

if (my_index <= NDEPTS)

{

my_dept = my_index;

/* Open relevant file */

sprintf (filename, "department%d", my_dept);

my_file_p = fopen (filename, "r");

if (my_file_p == NULL)

{

printf ("Could not open file %s\n", filename);

exit();

}

}

else

my_dept = 0;

}

16 Getting Started Chapter 1

receive_query (msg_p)

message *msg_p;

{

char query_name[MAX_NAMELEN], name[MAX_NAMELEN];

int query_hours, hours;

if (my_dept != 0)

{

/* Read employee name from message */

msg_get (msg_p, "%s", query_name);

/* Search through relevant file to find number */

/* of hours worked in my_dept */

query_hours = 0;

while (fscanf (my_file_p, "%s %d", name,

&hours) == 2)

if (strcmp (query_name, name) == 0)

{

query_hours = hours;

break;

}

/* Send reply message */

reply (msg_p, "%d%d", my_dept, query_hours);

}

else /* I am not responsible for any department */

reply (msg_p, "%d%d"", 0, 0); /* Say I won't be replying */

}

We now have a complete implementation for the time-card service. At

this point you can compile the two programs separately and link each of

them with the ISIS libraries isislib1.a, isislib2.a, and isislibm.a (in

that order). (The code and some sample data �les are provided in the

demo directory. Check with your site administrator to �nd out where these

subroutine libraries are located on your machine.) You can then start up

as many instances of the service program as you wish, perhaps on di�erent

machines, and as many instances of the query program as you want, also

on di�erent machines if desired, and begin issuing queries. To test the fault

tolerance of the program, you may wish to add a loop to the query program,

Chapter 1 Getting Started 17

so that for each name you type in, it broadcasts the same query over and

over, say 50 times. Then as the service is being queried repeatedly, you can

add new members by starting up new instances of the service program on

any machine or simulate a failure by killing existing members (using ^C or

the kill command). You will see that as long as there are at least NDEPTS

members, the sgrvice will continue to operate correctly. You can even turn If you kill a machine,

there may be a long

delay before ISIS no-

tices, depending on

how it was con�gured

at your site.

o� the power from a machine that has a member on it. In this case, there

may be a pause because ISIS will wait for an answer from this machine for

about 45 seconds before timing out and deciding that it has failed (NB:

this delay varies with the setting of the \-f" parameter to the ISIS protos

server; see Appendix A for details). To make this even more interesting and

fun, we provide the code for an implementation that works even if there

are fewer than NDEPTS members. The changes are simple. If the number of

members drops below NDEPTS, some members take care of more than one

department. The variables my dept and my file p become arrays, and the

replies carry arrays, too. Notice the changes to bcast, msg get, and reply

to handle arrays. The details of the syntax are given in Section 4.3. Here is

the service program.

#include <stdio.h>

#include "isis.h"

#define QUERY_ENTRY 1

#define MAX_NAMELEN 64

#define NDEPTS 5

address *gaddr_p;

int my_index;

int my_ndepts = 0;

int my_dept[NDEPTS];

FILE *my_file_p[NDEPTS];

main()

{

/* Same as before */

}

service_maintask()

{

/* Same as before */

18 Getting Started Chapter 1

}

group_change (gview_p, arg)

groupview *gview_p;

int arg;

{

char filename[16];

int n_members;

int i;

/* Compute a unique index for this member */

i = 0;

while (!addr_ismine (&gview_p->gv_members[i]))

i++;

my_index = i + 1;

/* Record number of members in group */

n_members = gview_p->gv_nmemb;

/* Close previously open files, if any */

for (i = 0; i < my_ndepts; i++)

fclose (my_file_p[i]);

/* Reassign departments */

my_ndepts = 0;

for (i = my_index; i <= NDEPTS; i += n_members)

{

my_dept[my_ndepts] = i;

/* Open relevant file */

sprintf (filename, "department%d", i);

my_file_p[my_ndepts] = fopen (filename, "r");

if (my_file_p[my_ndepts] == NULL)

{

printf ("Could not open file %s\n", filename);

exit();

}

my_ndepts++;

}

Chapter 1 Getting Started 19

}

receive_query (msg_p)

message *msg_p;

{

char query_name[MAX_NAMELEN], name[MAX_NAMELEN];

int query_hours[NDEPTS], hours;

int i;

if (my_ndepts > 0)

{

/* Read employee name from message */

msg_get (msg_p, "%s", query_name);

/* Search through relevant files to find number */

/* of hours worked in my_dept[i] and store in */

/* query_hours[i] */

for (i = 0; i < my_ndepts; i++)

{

fseek(my_file[i], 0, 0);

query_hours[i] = 0;

while (fscanf (my_file_p[i], "%s %d", name,

&hours) == 2)

if (strcmp (query_name, name) == 0)

{

query_hours[i] = hours;

break;

}

}

/* Send reply message */

reply (msg_p, "%D%D", my_dept, my_ndepts,

query_hours, my_ndepts);

}

else /* I am not responsible for any department */

reply (msg_p, "%d%d"", 0, 0); /* Say I won't be replying */

}

And here is the corresponding query program.

20 Getting Started Chapter 1

#include "isis.h"

#define QUERY_ENTRY 1

#define MAX_NAMELEN 64

#define NDEPTS 5

main()

{

/* Same as before */

}

query_maintask()

{

address *gaddr_p;

char name[MAX_NAMELEN];

int dept[NDEPTS * NDEPTS], hours[NDEPTS * NDEPTS];

int i, j, k, rval;

int arraylen_1[NDEPTS], arraylen_2[NDEPTS];

/* Find address of timeservice process group */

gaddr_p = pg_lookup ("timeservice");

if (addr_isnull (gaddr_p))

{

printf ("Sorry! the service is not available\n");

exit();

}

isis_start_done();

/* Loop asking queries */

printf ("Enter employee name (^D to quit): ");

while (scanf ("%s", name) == 1)

{

/* Broadcast a message containing the name and collect */

/* replies */

do

rval = bcast (gaddr_p, QUERY_ENTRY, "%s", name,

ALL, "%D%D", dept, arraylen_1,

hours, arraylen_2);

while (isis_nreplies != isis_nsent);

Chapter 1 Getting Started 21

/* Exit on error */

if (rval <= 0)

{

isis_perror("Sorry! bcast error");

exit();

}

/* Print out time card */

printf ("Time card for %s (based on %d replies):\n",

name, nreplies);

printf (" Dept. Hours\n");

for (i = 0, k = 0; i < isis_nreplies; i++)

if(dept[i] == 0)

continue;

else for (j = 0; j < arraylen_1[i]; j++)

{

printf ("%8d%8d\n", dept[k], hours[k]);

k++;

}

/* Read in next name */

printf ("\nEnter employee name (^D to quit): ");

}

}

Exercise

As an exercise, you may wish to add an \update" entry to the service pro-

gram and write a corresponding update program. The update program

should read in new data for each department from the terminal, and send

this data in a message addressed to the update entry number of the service.

The update entry should read the data out of the message and rewrite the

�les department1, department2, If you have a shared �le system, each

member should rewrite only the �les corresponding to the departments it

is responsible for; if you have separate copies of the �les at each member,

each member should update all the �les. An interesting observation is that

because ISIS ensures that message delivery events occur in the same order

everywhere, you can continue to send query messages to the service even as

22 Getting Started Chapter 1

an update message is being sent. It will never be the case that some members

respond to a query based on old information, while others respond based on

updated information|an important property for many applications.

But why does it work?

It is possible that you don't believe that the program above will work. Here's

what seems to be a counter-example. Consider a query that is being sent to

the service just about the same time as one of its members fails. Assume that

the broadcast message reaches some members before the failure is noticed

there (i.e. before the routine group change is called there), while it reaches

the other members after group change is called. The �rst set of members

respond based on the departments assigned to them before the failure, while

the second set respond based on the new assignment of departments. Clearly,

it is now possible for two reply messages to contain information about the

same department, while the �les for some other departments may not be

searched at all. One of the main features of ISIS is that such anomalous

orderings do not happen. The program above works correctly only because

the noti�cation of membership changes and the delivery of broadcast mes-

sages occur in the same order at all the members. ISIS guarantees that all

events (including broadcast message deliveries, monitor noti�cation, and a

host of other functions to be discussed later) occur in the same order at all

processes. This is true even for the noti�cation of unpredictable events like

process or site failures. It is this feature that makes programming with ISIS

so simple. In the absence of this ordering guarantee, every query in our

example would have to involve some kind of agreement protocol to ensure

that the members agreed on the current state of the group. This not only

muddles the application, but also leads to rather poor performance. ISIS

insulates programmers from this level of complexity. This allows them to

work in a simple and ordered environment and makes it possible to build

distributed applications that would otherwise be intractable. We expand

upon this concept below.

Ordering in ISIS

To illustrate how the ordering of events works in ISIS, let us �rst look at

what an execution might look like if we didn't have any ordering guarantees.

Figure 1.2 shows three processes A, B, and C as they join and leave the

Chapter 1 Getting Started 23

Figure 1.2: An execution in a disordered world.

24 Getting Started Chapter 1

process group Pgroup, while two other processes P and Q send messages to

this group. The �gure also shows (in curly braces) the view each process

has of the current group membership. Notice the confusion. A receives m1

before m2, while B receives m2 before m1. If A and B were maintaining

copies of the same data structure, for example, andm1 andm2 were requests

to perform operations on this data structure (e.g. add an item to a queue,

or remove the �rst item on the queue), then performing them in di�erent

orders could lead to the copies of the data structure becoming inconsistent.

So additional communication is necessary before A or B can act on any

incoming request to avoid such inconsistencies. Further in the execution

we see that A receives m3 when it thinks that Pgroup consists of just A

and B, while B and C receive it when they think the group contains A, B

and C. We have already seen in our time service example that handling a

message based on inconsistent views of the group membership could lead to

incorrect results. Again, the only way to avoid this is to run some kind of

agreement protocol for every incoming request. The �gure also shows m4

being delivered to processes with inconsistent group views, this time because

of a failure.

How does ISIS help? A programmer would like to think of actions like the

delivery of a broadcast message or the noti�cation of a group membership

change as a single event, even though they consist of parts that take place

in more than one process and possibly at di�erent times. For example,

one would like to be able to write a program thinking, \When the group

receives the message broadcast by process A, do something," or \when the

group is noti�ed of the failure of process B, do something else." One look at

Figure 1.2 should convince you that this kind of thinking is not possible in a

disordered environment. The programmer is forced to consider the possible

interleavings of the various events and cannot think of distributed events like

message delivery or failure detection as single units. A programmer using

ISIS, on the other hand, is guaranteed that distributed events like broadcast

message deliveries, noti�cations of group membership changes (even if they

are due to failures), and many other kinds of events will occur in exactly

the same order in every process. In other words, interleavings like those in

Figure 1.2 will simply never happen in ISIS. Figure 1.3 shows an execution

that could occur in ISIS with the same set of events. Notice how much

simpler things become. A programmer can work with the knowledge that

each process has the same view of the world when an event like a message

delivery or membership change occurs (because each process has seen the

same preceding set of events and in the same order). Since the programmer

Chapter 1 Getting Started 25

Figure 1.3: An execution in the ISIS environment.

26 Getting Started Chapter 1

knows the algorithm each process follows, he or she can code each process

to make unilateral decisions and know that they will all make consistent

decisions. No special agreement protocols need be coded (ISIS does all this

hard work for you). The result is a program that is simpler to code, easier

to understand, and quicker to debug.

One feature of Figure 1.3 is worth elaborating. Observe the delivery of

m3. At the time P initiated the broadcast, process C was not a member

of Pgroup. However, by the time delivery occurred, the members had been

noti�ed of C's join. The question arises of whether m3 should be delivered

to C or not. P broadcasts m3 to the group Pgroup, and if it is treating

the group as an abstract entity, it should not be concerned with the ac-

tual membership of the group. On the other hand, if a member receives

a broadcast message when it has a certain view of the group membership,

it is reasonable for it to expect that the message was sent to all the other

members in its view of the group. This is precisely what ISIS guarantees.

If a member of a process group receives a broadcast message addressed to

the group, then a copy of the message will also be sent to all other members

that it knows to be in the group at the time the message is received (this

membership may be di�erent from when the send occurred). Accordingly,

copies of m3 are delivered to A, B and C. It follows from this that all the

members will have exactly the same view of the group membership when

any particular broadcast message is received.

Virtual synchrony

The discussion above should have given you an idea of how the ordering

of events ISIS makes it easier to write distributed programs. To enable

you to use ISIS most e�ectively, however, we urge you to make one more

conceptual shift in the way you view ordered events. Compare Figure 1.3

with Figure 1.4. In Figure 1.4, each process sees the same set of events

and in the same order as in Figure 1.3. In other words, unless a process

actually looks at a clock and records the time, the execution in Figure 1.4

is indistinguishable from the one in Figure 1.3, at least from the point of

view of any individual process. The di�erence is purely conceptual and lies

in the way you, as the programmer, look at the execution. Figure 1.4 shows

distributed events like message delivery happening everywhere at the same

time (i.e. in synchrony). Of course, ISIS does not guarantee that distributed

events will actually be synchronized; it only guarantees that they will be

Chapter 1 Getting Started 27

Figure 1.4: A synchronous execution.

28 Getting Started Chapter 1

ordered as in Figure 1.3. But as we earlier observed, a process cannot

distinguish the ordered execution (Figure 1.3) from the synchronous one

(Figure 1.4). What this means is that a programmer can code each process

as if the execution will actually be synchronous. Any actual execution in the

ISIS environment will only be ordered, not synchronized, but a process will

not be able to tell the di�erence (unless of course it records the clock time).

So any code written as if the environment were actually synchronous will

work correctly when run under ISIS. This is why we call the ISIS execution

environment virtually synchronous.

Virtual synchrony enables a programmer to write code while thinking of

distributed events as occurring everywhere at the same time|precisely the

kind of thinking we said was impossible in a disordered environment. To

actually make distributed events happen simultaneously would be wasteful

and ine�cient because this would mean giving up the vast potential for con-

currency normally available in a distributed system. Instead, ISIS enforces

enough order that the resulting code works correctly, while not sacri�cing

concurrency. This idea goes beyond message delivery and the noti�cation of

events. Each of the ISIS tools is designed with virtual synchrony in mind.

Even though they are quite complex and concurrent internally and often in-

volve a number of rounds of communication, they can all be used as if their

actions happen instantaneously and indivisibly at all the relevant processes.

The state transfer tool described below is one such example. The result

of virtual synchrony, then, is to remove from the programmer much of the

complexity that arises from distribution, concurrency and fault-tolerance,

making it as easy to write a distributed program as it is to write one for a

single central machine.

State transfer

Let us go back to our time-service example. The rule we used to divide the

work has one big disadvantage. Each time the group membership changed, a

member could become responsible for a completely new set of departments.

It had to close all its �les and open new ones. In a real-life implementation,

parts of the �le (or all of it) would be read into main memory and fast access

structures constructed to search through the data. All this would have to be

redone each time the membership changed. Let us instead consider a rule

for dividing the work that avoids unnecessary reassignment. For example,

we could adopt the rule that when a member leaves the group, its depart-

Chapter 1 Getting Started 29

ments are assigned to the member responsible for the fewest departments.

A member that joins the group takes over half the departments from the

member with the most departments. To compute the new assignments un-

der this rule, it is not enough for a member to know just its own assignment

of departments. Each member has to know the assignments of all the other

members as well. The code below shows how this might be done.

#include <stdio.h>

#include "isis.h"

#define QUERY_ENTRY 1

#define MAX_NAMELEN 64

#define NDEPTS 5

#define MAX_MEMBERS 10

int n_assignments = 0;

struct

{

address his_addr;

int his_ndepts;

int his_dept[NDEPTS];

} assignment[MAX_MEMBERS];

address *gaddr_p;

int my_index;

int my_ndepts = 0;

int my_dept[NDEPTS];

FILE *my_file_p[NDEPTS];

main()

{

/* Same as before */

}

service_maintask()

{

/* Same as before */

}

group_change (gview_p, arg)

30 Getting Started Chapter 1

groupview *gview_p;

int arg;

{

char filename[16];

int n_members;

int i, small_i, failed_i;

address small_addr, *failed_addr_p;

/* Compute a unique index for this member */

i = 0;

while (!addr_ismine (&gview_p->gv_members[i]))

i++;

my_index = i + 1;

/* Record number of members in group */

n_members = gview_p->gv_nmemb;

/* Reassign departments from failed members */

failed_addr_p = &gview_p->gv_departed[0];

while (!addr_isnull (failed_addr_p))

{

/* Find member with fewest departments */

nsmall = NDEPTS + 1;

for (i = 0; i < n_assignments; i++)

if (assignment[i].his_ndepts < nsmall)

{

small_i = i;

nsmall = assignment[i].his_ndepts;

small_addr = assignment[i].his_addr;

}

/* Transfer departments from failed member */

failed_i = 0;

while (!addr_isequal (&assignment[failed_i].his_addr,

failed_addr_p))

failed_i++;

for (i = 0; i < assignment[failed_i].his_ndepts; i++)

{

assignment[small_i].his_dept[

